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FOR AXIAL STBJZ’SSES, SHEAR STRESSES, AND SHEAR C3!!IIT31R

By Oscar Erlandsen, Jr., and Lawrence If. Mead., Jr.

SUMMA3LY - . .,

A ,practical and relatively rapid nethod of compensat-
ing for shear lag in box-beam analysis, with accuracy suf-
ficient ,for design purposes, iS presented. Effectiveness
curves for box-beam elements are derived for an ideal,
symmetrical structure. Application of the ideal curves to
practical structures is described in detail using, as ex-
amples, the center section of the wing for an airplane desi-
gnated as A and the unsymmetrical D-beam of the wing
for an airplane designated as 3.

Tabular computation forms for rapid, accurate calcula-
tion of axial stresses, shear center, and shear stresses
for a beam with shear lag are included. Results of analy-
sis are compared with test stress distributions . Analyti-
cal methods of checking the shear-lag curves by the use of
the principle of consistent deformations arc illustrated
<as Ca further indication of their reliability.

INTRODUCTION

Bendiilg stresses in box bea,ms with thin cover sheets
usually differ from those calculated by the ordinary bend-
ing theory. This difference is caused primarily by shear
deformation in the flanges or cover sheets. In order “to
compensate for clifferences from the theory, nethods of
shear-lag analysis have teen developed.

Kuhn (references 1 to 5) has done much mathematical
and experimental work on idealized structures under sim-
ple loading conditions and has developed two methods of
shear-lag analysis - the substitute single-stringer method
and the shear-fault method - that approach the problem by
means of arithmetic integration. This approach gives fair-
ly accurate results for beams that are fairly symmetrical.

.:-_As,the bea-m becomes more unsymmetrical, however, with..-.-—-
possib-ilities of changes of taper, camber, variable S~C-
tions, discontinuous stringers, holes, and indeterminate
boundary conditions and as the loading pattern becomes less



.— ,,,, ,,,,,,., ,

2

simple, the NACA methods become more difficult to apply.
The computation is very tedious and of dubious accuracy
where there are excessive “approximations required of the
designer in i-dealizin~ the structure so that it will fit
the method. Furthermore, the NACA methods require two
separate analyses for beam and chord bending, which con-
siderably lengthens the calculations.

From design considerations, it is desirable to have
simple flexible method of shear-lag analysis that can be
tailored to the individual conditions of any wing beam.

a

It should require a minimum of idealization of sections so
that irregular beams may be readily analyzed and should, if
possille, enable a simultaneous consideration o.fbeam and
chord bendii~g. It should le -possible to check the results
of the analysis in a simple straightforward fashion.

The method- of shear-lag analysis herein presented was
developed hy the Grumman Aircraft Engineering Corporation
in the course of recent designs and, it is believedj incor-
porates these desirable features.

OUTLINE OF METHOD

Essentially, the method consists in applying a correc-
tion for shear lag to the areas of a beam cross section
and then analyzing the su%stit-ute beam by the conventional
bend-ing theory. A check for the shear-lag correction can
be made if desired.

(1) Shear lag reduces the effectiveness of cover sheet and
stringers for carrying bending stresses. Consequently,
stresses in the cap strips will be raised and stresses in
the stringers will be reduced from those computed by the
ordinary beam theory. If the stringer stress at a section
decreases 20 percent and. the cap-strip stress increases 10
perceilt from the theory, the effectiveness factor E’ for
the stringer will be 100 - 10 - 20 = 70 percent, referred
to the beam theory cap-strip stress as 100 percent.

Effectiveness curves are drawn in chordwise and span-
wise directions for each stringer and wing section by tak-
ing mathematically id-eal curves and altering them arbitrar-
ily to suit local conditions in the structure. Care must
be taken that the location of the centroid of the effective
material, and hence the shear center, varies in a smooth
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spanwise curve. Common sense, cross-plotting, and a few
rough checks will give surprisingly good results even with
little experience In drawing such curves,

(2)’Stringer and effective sheet areas are reducecl by the
effectiveness factor El, and section properties are com-
puted giving reduced ‘Ieffective’l values for Ixx and Izz.

(3) Axial stresses are computed by use of the method pre-
sented in reference 6 for unsymmetrical bending, modified
to take the effectiveness factors into account. These
stresses should give the actual stringer and cap-strip
stresses compensated for the shear-lag effect.

(4) Shear stresses in the skin and webs that go with the
axial stresses found in (3) can then be accurately com-
puted by the new method. The shear center can also be ac-
curately located and its position at the various wing sec-
tions can be checked to see that it falls on a smooth
spanwise curve,

(5) ~he accuracy of the original selection of E’ can be
proved by utilizing the principle of consistent deforma-
tions. Any two points on the wing surface can be selected
and the deformation of one of them from the other can be
computed by two or more different paths, using the axial
and thg shear stresses obtained in the analysis. These de-
formations shoulci agree if” the values of Xl were reason-
ably correct.

COMPARISON WITH NACA METHODS

The main difference between the effectiveness-factor
method and the NACA methods of shear-lag analysis is the
point at which engineering judgment is requii”ed. The NACA
calls for jud.grnentIn idealizing the section before shear
lag is considered. The effectiveness-factor method re-
quires an estimate of the shear-lag effect at the outset.
It is believed that in the design of new wings, the
effectiveness-fact or method is more direct , more rapidly
applied, and comparably accurate.

In the NACA methods it is easy for the average person
to lose sight of the physical significance of the pro%lem

,.. amidst the maze of coefficients and unfamiliar formulas
and to make time-consuming mistakes. The effectiveness-
factor method obviates this possibility, it is felt, by its
simplicity and flexibility.
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(1) Once the effectiveness curves have been drawn, the
analysis follows the standard bear. theory. Both beam and
chord %ending are considered simultaneously~ as described
later.

(2) The method is perfectly ayplica.ble to any shape of
beam because the areas of the existing structure are
changed rather than the shape of the learn being idealized
without changing the areas, as is done in the NACA method.
It is believed that changing the area is an easier task, ~
particularly for complex unsymmetrical sections such as D-
beams,. where idealization of shape would be very difficult.

(3) Local irregularities ancl changes in section can be
readili coilsidered by suitably drawing the effectiveness
curves . Material outside the main beam may also be con-
sidered in the calculations if it is believed that it
carries bending stress. This ”consideration would be dif-
ficult by the NACA method.

(4) Effectiveness curves give a handy tool with whichto
design stringer skin-rivet connections.

Analyses by both the NACA’ and the effect.ivene.ss-
factor methods were made for a wing section of ’airplane A
and were comyared with test results. Remarkably good
agreement was shown for h,oth methods, but the effectiveness-
factor method showed more adaptability to lo”cal conditions
and required less computation.

EFFECTIVENESS-FACTOR CURVES

The nature of effectiveness factors and their appli-
cation to shear-lag analysis will now be developed and
illustrated for a simple case. A mathematical derivation
of formulas for the values “and the shape of effectiveness-
factor curves in both spanwise and chord-wise directions
will %e presented for an idealized beam. The method of
considering beam and chord lending simultaneously with
shear lag included will be outlined, and the relation be-
tween effectiveness curves and t~.c location of th’e Sh.car
center in unsyr~llletrical-se,ctions will be discussed.
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Nature of Shear Lag

Shear lag and how to compensate for it can be illus-
trated by consideration. of figure 1, which represents the

-. ‘o-ottomsurfs”’ce‘“ofa Wing-beam from the plane of symmetry
of the airplane to the hinge fittings for the outer panel.
Here two loads 2 act on the cap strips.

The usual theory assumes that the panels will elongate
as shown in figure l(a) , which would require uniform stress
across the panel at. all sections, even across section D.
Yhi.s assumption is obviously impossible because the center
stringer can have no stress or axial load at its outer
f,ree end.

Actually the panel will cleform as in figuro l(b) ow-
ing to the s]lear deflection or l!lag:lin the sheet. The
thinner the sheet” the more the lag. At the free end the
stress in the stringer will be zero. As one progresses
along the stringer toward the root, the load 2 starts to
spread out into the sheet in the form of shear stresses
that load up the stringer.

At the root for an infinitely loilg panel the stress
in the stringer would be equal to that in the cap strips
and there would be no shear stress in the sheet and no
shear lag.

It is important tcI realize that the stringer can be
loaded only by shear from the, sheet. If the panel is
short or the sheet very thiil, the sheet will not be able
to transmit enough load to the stringer to stress it at
the root to the same amount as the cap strip (as would be
figurecl from the ordinary hetim theory). This case is usu-
ally true for wing box beams.

Hence, it is seen that the stress in the stringer
varies from- zero to some maximum value at the root; this
value depends on the climensions of the beam. ‘Compared
with the “uniform stress of ??/A calculated from the beam
theory, the stringer is operating at a reduced stress, or
reduced effectiveness, that varies on some smooth curve
from ill = O at the free end to El = maxiglum at the”
root. Likewise the cap-strip sti”ess will vary from a max-
imum value of the free end to a.minimum value of the root.,,=...4 ,.a._.,.p~., .,.,-- ~wa ,,...X?ZY-- -,-..........----

These deviations from the beam-theory stress may be
obtained from figure 2.

I
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At section C of figure l(b), let It be assumed that
with shear lag the stringer stress will he half of that
computed. ~y the P/A formula (fig. 2). The value of E:
for the stringer would he 0.50 and for the cap strips
would be sligh~ly” greater than 1.00. It is convenient,
however, always to assume “the E for the cap strips to be
unity.

The effectiveness Er for a stringer will be defined
as the effectiveness of the stringer for carrying stress
as compared with the cap strip. This definition will make
xl for the stringer slightly less than 0.50, say 0.43.
If the effectiveness factor for each member is applied to
the area of the member, an effective area is obtained.

Effective area = (3Xi.00)+(2X0.43)+(3Xl .00)=6.86 square inches

Shear-lag stress in any member =
P

‘effect
xE!

l?or cap strip
20000
~ x 1.00 = 2920 pounds per square inch’

e

For stringer ,- X 0.43 = 1254 pounds per square inch
●

Beam-theory stress = 20000P/A = * = 2500 pounds per square inch

Shear-lag st~inger stress 1254
=— = 0.50

Bean-theory stringer stress 2500

This result checks the original assumption. It is pos-
sible, therefore, to take shear lag into account by select-
ing effectiveness values for each element of the cross sec-
tion. .The component areas are corrected by these factors,
and from there on the calculation is similar to that for
the ordinary beam theory. The actual value of the effec-
tiveness factors selected will be governed by the mathemat-
ical derivations to he discussed later.

Mathematical Derivation of Spanwise Curves

A box-beam cover is statically indeterminate internal- .
lY to the first degree; therefore, with two static rela-
tionships and one elastic relationship, it can be solved.
The symbols are defined in apFendix A. From these three

.
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fundamental equations~ differential equations for fp , fL ,
and fs can be derived in terms of the physical constants

and the loads of the problem~ These differential equations
can be solved,mathematically for simple loadings and sym-
metrical sections. The ratio of fL to fF will be the
effectiveness factor for the stringer member in terns of

the cap strip.

The sketch of figure 3 shows the idealized beam with
applied moments and shears. The material in the bottom
of the beam can be considered to be concentrated entirely
at the bottom flanges. !I!heorigin of the coordinates is
taken at the tip. (See reference l.)

Effectiveness-factor curves for the idealized beam
sketched in figure 3 will be mathematically derived. The
following assumptions are made in the derivation:

1. Ribs, and hence beam, have infinite chordwise stiff-
ness so that chordwise strains may he neglected

2* Diagonal tension in the sheet is taken czre of in
factor G

3. Sections and loads are symmetrical about the yz plane

Fundamental e~uations.- Consider the static equilib-
rium of the element dy (fig. 4 and reference 1). It will
be seen that

dl?L = ML

SWdy
dpF = -— -

h
dSC

(la)

(lb)”

From assumption (1) and figure 5, it follows that the shear
stress

G (AF A AL)f5=~

but
y.y

L=
f

fL dy
..— .=.,---- .-,- E..

“y=i

and
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Y=Y

f

flJ dy
l?= z

y=IJ

and, by differentiation,

?Lf~ = - & (f~ - fL) tiy (lC)

Effectiveness factor.- Equatioils (la), (1%), and

(lc) can he combined into four differential equations for
fF~ fL> and fs. (See appendix B for detailed derivations.)

Por the bean in figure 3 the equations for fr and f~
can be solved to be

M
fF=—

[

~+ALCOS~K (L-y)

AT h ~ cosh KL 1
[

fL .-L I .- cosh K (L - y)
AT h cosh XL 1

(2a)

(2b)

where ii/ATh is the ordinary beam-theory stress and the
tern iil the bracket is the effectiveness factor of each
referred to the beam-theory stress as unity. Since the
El for the’ flange, or cap strip is taken as 1.00 for con-
venience, the actual El for the stringer referred to the
cap strip will be

fL 1- cosh K (L-y)
El=_= cosh KL

f~ ~ + AA cosh K (L-y)

AF cosh KL

(3)

where K, the shear-lag parameter, equals ]-:)

ancl the other symbols are defined in appendix A. Equation
(3) is plotted in figure 6 for various values of K and L

Limitations and Application of Spanwise Curves

Multistringer beams.- Equations (2b) and (3) are for
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a single-stringer b-earn. When there 3.smore than one.,’
stringer, the usual case, the stringers between the cap
strip and the shear> center Bhould be lumped into a ,single
str,inger at, the area centroi”d .of the stringers,-. a distance
%.:;.f.r.o~the. ,.cap:js,trip,,~he.fore.,X. is-eompu-t-ed-...T.:hi-smeth---
od will- give a good approximation of the airerage, El for
the stringers for a fairly symmetrical box beam. The. ch,ord-
wise clistribution between these stringers will follow the
shape of the chordwise curves’ di-scussed later.

:’... ,- ,.

For very unsymmetrical beams, such as D-beams, values
from equations (2b) and (3) will be only very approximate,
but t’he’general shaps ‘of the curves will always hol~ an-d
the values”,can best be obtained from consider,atio.n,o~. the
location of the shear center and the center of gravity of
the effective material. ,’ . .’.

..

Variable sections.- ll!quation’(3) is strictly true
only if, at each spanwise station, the following condi-
tions’ hold: ‘ “:

(b)””’Cons,t’antA~,/AF and no cam~er,,.,,

‘(c) ‘Constant beam-theory axial “stress ‘M/ATh

(d) Constant vertical-web shear stress S~/ht

Conditions(c) and (d) are sought for in practical
wing design and condition (b) is usually fairly nearly
true . Con&ition (a) is seldom satisfied “for a. tapered
variable-section wing but, by ‘the use of an average value
fQr the panel, the error “will not be large and judicious
fairing of curves ‘will gSve results ac’curate enough for ‘
design purposes. .. .. .,

Riveted .lointso- “I?ora constant-section stringer,
the slope of an effectiveness curve such as shown ‘i’nfig-
ure 6 represents to some scale the change in axial load
per inch of span. This value is’the design load for rivet
spicing between stringer and skin and will be critical at
the free’!.end.”ofthe stringer”where the slope is steepest..
Since for most wings the curves will not be precise, the
1.20 fitting .,factor,should not be omitted ,j.nthe design of--M.,-.–,,>-..
rivets based on effectiveness” curves. The curves of fig-
ure 6 are critical for stringers but are not critical for
rivets; the 1.20 fitting factor will cover any divergence.
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Mathematical Curves for Chordwise Effectiveness

In references 1 and 2 analytical solutions have teen
made that show the dhordwise distribution for ideal beams
with a cover sheet without stiffeners (or infinitely close-
ly spaced stiffeners). This distribution follows a hyper~
holic cosine law

f = fr Cosh (Yb $)
cosh Yb -

(4)

where f~ is the stress in the cap strip (x = b) and Y

is an auxiliary parameter obtained from the relation

tanh Yb fL

Yb
.% (5)

where ‘L/ ‘F is the ratio of the stress in the stringer

material located at the stringer force centroid to the
stress in the flange. Figure 13 of reference 1 is a curve
presented to facilitate solution of equation (5). The
ratio of f/fL from equation (4) will be the effectiveness

of any stringer in terms of the cap strip or flange. Curves ,
of f/fL for various values of Yb or fL/ fF are pre-
sented in figure 7.

Limitations and Application of Chordvise Curves

In general, the mathematical curves of chordwise effec-
tiveness are not strictly accurate, because

(1) Most wfngs have a finite number of stringers and will
not follow equations (4) and (5) exactly

(2) Local conditions, dissymmetry of section, etc., will
vary curves

The .theoretical curves, however, will give the general
shape of chordwise curves and also will give a point of de-
parture from which to correct for the local conditions of
the problem.
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Curves for Simultaneous Beam and Chord Be,nding

The previous discussion has dealt wfth effectiveness
-curves for bending in. only, the beam direction. Wing beams
a’re subj8cted to both beam and chord bending: -For the box ~~
beam shown in figure 8 the chordvise-effectiveness curves
for beam and chord bending are shown and it will be noted
that they are not the same. For a precise analysis, this
difference means that there are two different beams with
different areas Corresponding to the two effectiveness
curves. The beams must be separately analyzed for beam
and chord bending, which would’be very tedious.

If a single value of effectiveness for both beam and.
c,hord bending can be selected, the beam may be analyzed by
the unsymmetrical-bending formula. This will be done by
using the beam-effectiveness” curve as the true total effec-
tiveness of the beam. The error introduced will be small
for the following reasons:

(1) The chord moment, at the most, is only about one-
third of the beam moment and it is usually less than this.

(2) Yor the beam of figure 8, where the beam and the chord
effectiveness of members b and c near the chord neutral
axis differ markedly, the stresses due to chord bending
will he small and the errors even smaller. This result is
true in most box-beam sections.

(3) Material back of the main beam is usually ineffective
in beam bending but quite effective in chord %ending. In
order to take care of this condition, the effectiveness
factor E: will be selected from consideration of chord
bending and the z coordinate of the material will be as-
sumed to be zero, so tha,t the terms will drop out of the
beam-lending talc.ulation~ just as though the beam effec-
tiveness were zero, but will not drop out of the chord ca.l- .
culations.

(4) Where beam effectiveness is very low and chord effec-
tiveness is high, the value of the effectiveness factor
El can he slightly increased over the value fOT beam ef-
fectiveness in order to compensate i? part.

A’little thoughtan~ ca~q~~n evall.latiilgthe relative chord...*.
and beam effects will give effectivene”is- “c-urvesthat” ‘are
sufficiently accurate for design purposes.
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RELATION OF SHEAR CENTER TO EFFECTIVENESS CURVES

In symmetrical sections the ideal curves of figures
6 and 7 are usually sufficient ,guide for obtaining fairly
accurate results. In unsymmetrical sections such as D-
beams, however, the ideal curves give a guide as to the
shape of the curves but are of little service in selecting
the values, because it is nearly impossible to get an accu-
rate value of K with which to enter the curves. The 10-’
cation of the shear center and the centroid of the material
effective in bending are used as guides in drawing effec-
tiveness curves for such beams.

Shear-center location.- The shear center, s.c., of a
section shall be defined as the point at which any””load may
he applied to the section without tending to twist the sec-
tion. Only pure bending will occur. (.It should be noted
that the sheer center is not necessarily the same as the
elastic axis about which the section twists.) For a sym-
metrical section the shear center will coincide with the
centroid of the section. For unsymmetrical sections, how-
ever, the resultant of the shear forces on the section
does not pass through the centroid. (See fig. 9.)

The point S.c. is so located that the moment of tfi”e
shear forces a%out S.c. is zero. Any load applied
through point S.c. will cause pure bending in the direc-
tion of the load. Reference 6 shows that for. a D-beam
section the shear center S.C. lies as shown in figure 9(c),
inside the closed torque box and not far from the centroid.
The heavier the vertical web becomes with respect to the
skin sheet thickness~ the closer the shear center will move
toward the web.

Shear center with shear lag .- The presence of shear
lag is taken care of by a reduced effectiveness for the
area of matbrial other than at the cap strip. In a D-beam
this ,reduction will move the centroid of the effective area
closer to the web than was the centroid of the total area
and hence closer to the shear center. For sections with
closed torque boxes it will be assumed, therefore, that the
shear center and the centroid of the effective material
coincide and fall within the torque box. This assumption
is only approximate but the error introduced is small. The
assumption is a useful ones because rules that apply to the
location of the shear center can be applied to the centroid
of the effective areas and will serve as a control on the
shapes of the. effectiveness curves selected.
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Sample effect iwness curves for wings of izwdfiairplanes,

airplane A and airplane B will be drawn. Calculations for
the corresponding stresses were made! fi’u~-the.)v~~g.of:~air-
plane A (not included herein) and cornparis~fi w~fih test re-
sults will be made. For the wing of airplane B, sample
calcul&tions will be, includ.e,il,~toilly:trqt: the,~:t~naa~d
forms ‘thatJfiav6 %een-detielop A& for ra~ia<-’wing anal~sisi

.,, ,. >.. , - ..:... ,-,
Ce teriecti;nYO’’ ~..~hel$~&~”ef$ec;~Ve;~~~~~~~ f+r+~-(~iii:n

be drawn for the, w>ng:of:a:r,)lane A:.fro~. s$ations.18 tP2’10.
Figure 11 shows-a typical cross section and--pl~n”i- Iiboafd of
station 13 the section will be co~~idere#:,Le~iff:.enough to
neglect shear lagt “:%ecau~:~~~o-$the-’d;,@l=~n%h dou~ler plate
(later altered to 0.102 incfi””%uthere’-kept at 0.081 inch

L “.
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for com~arison with tests). Outboard of station 110 there
is a large hole in the top that will be considered. Mate-
rial ahead of and back of the main box beam will be consid-
ered ineffective and will be neglected. Effectiveness fac-
tor XI is plotted for the top cover in figure 12. ‘

l?he effectiveness in chord bending would be unity
throughout the cover but, as stated previously, the stress-
es due to chord bending will be small and the curves will
be drawn according to beam bend”ing only. Because of symme-
try, the shear center of the original section will be ap-
proximately at the center of gravity of the section. She ar
lag will not appreciably move the shear center and a de-
tailed study of these motions will be unnecessary in this
simple structure. (See airplane 3 D-beam treated later
for the case in. Which shear-center location is significant.)

P. Effectiveness. fac tor determination for tou surface.-

l?he effectiveness factor for the top surface can be deter-
mined as follows:

1. Stringer D -

Find spaawise-effecti.veness tliStTibution for stringer D

At station 1$, El =’0
because of hole beyond these

At station 110, I?t = O points

To approximate 31 at station 66, compute fqr this
section

These values were obtainerl from idealization of sec-
tion 30-94 (fig. 11). Consider one-half width of beam and
take b as the distance from front beam to center of grav-

\ ity of stringers and cover plate. AF = elements (1) + (2)

+ +(3), AL = etements ~(3) + (4) + (5) + (6) + (7) + *(8)

K2 = 0.40 X 0.156 ~ 1 + 1

8.00 1.004 2.702

= 0.0078(0.995 + 0.370) = 0.01066

K = 0.1032



From the curves of fi~re 6 the effectiveness at oen-
ter of span is 0.987 for K = 0.10. Therefore, assume that
El = 92 percent at station 66 for stringer D. l!his value
is. considerably lowe!r than 0.99 but is justified because:

a. The quantity X is very approximate owing to irreg-
ularities of section. camber, etc.

l). Curves of figure 6 are for a single stringer at oen-
ter of gravity of stringer material on one-half of center
line. For stringer at center line of total section, Et
will be less, followtng smooth curve of figure 7.

Inboard of station 66, curve Dean be assumed to fol-
low very generally the shape of the idealized curve and Is
held high in order to take” care of the increased stiffness
from stations 18 to 30 because o.f the doubling plate. out-
board of station 66, the curve has the idealized shape but
is lower than the inboard curve because of the thinner
cover sheet.

2. Stringers B and F -

Stringers B and F can be considered fully effective
over almost the entire length of the beam, because of
their proximity to the flanges and their continuity through
the plane of symmetry of the airplane. At station 126 the
effectiveness will be zero because the hinge fittings of
the outer panel are attached to the beams only. The effec-
tiveness curve will stay very high until quite near sta-
tion 126, so that in the region from stations 94 and 110,
El will drop only slightly,

3. Chordwise Plots.-

With tentative Et curves plotted spanwise foz string-
ers A, B, and D, chordwise plots through these stringers
may be made using the shapes of ideal curves and with fig-
ure 7 as a guide.

4. Stringer C -

~rom the chord.wise plots of step 4~ the spanwise
curve for stringer C may be obtained. Mote that this curve
is similar to that of stringer D but is slightly higher.
The shape of this curve iS a c“ross check on the accuraCY
of the chordwlse plots.
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5. Stringer E -

At station 18$ El will be very nearly equal to 1.00
because of continuity. At station 110,. El equals’ O.
Therefore, the curve will be as shown in figure 12. At
the outboard end it will coincide with the curve for C
because of the symmetry. The c,hordwise plots may now be
completed. Bottom-surface e~fectiveness curves were also
,dr5wn but are not shown.

Comparison of analysis with test results.- Final
‘stress values obtained by the effectivenessi-factc?r method
of analysis from the curves of figure 12 are plotted in
figure 13 as a chardwise plot and are compared with test
readings taken with Huggenberger strain gages on the ac-
tual wing surface. Qhese test resu’lts are as reliable as
test results can be expected to be, for there was no buck- .
ling in the skin nor undue distortions during the observa-
tions. Curves for the stress by the beam theory and by
the NACA substitute single-stringer method of shear-lag
analysis are also presented for comparison.

Agreement between test values and”the effectiveness-
factor method is generally very good, and it is easily ap-
parent how to alter the effectiveness curves to improve
the agreement. It was assumed that stringers “B and 1?
were fully effective and stringer E nearly S.O. This as-
sufiption was conservative . If the values of ET of these
members were dropped slightly below 1.00, the agreement
would improve, The curve as drawn, however, is sufficient-
ly good for design purposes.

Note that, wit-n the test results, compressive stresses
tend to be lower at the front beam and higher at the rear
beam than computed because of the effectiveness .of the ma-
terial outside the box beam, particularly for chord bending.

The NACA method for just beam. bending indicates that
good agreemqnt COUICI be had if the chord effect were superd
posed on it. The necessity for idealizing the sectien ac-
counts” for the symmetry of the curve and the lack of local
irregularities that are pickecl up by the effectiveness-
factor ,method. The ordinary beam theory shows good agree-
ment only at the front beam and emphasizes the need for a
quick and relatively accurate shear-lag method. The
effectiveness-factor method seems to fulfill this requireti
ment admirablY.



Wing D-Beam of Airplane B

The D-beam in the wing of airplane B is quite unsymmet-
rical and hence compensation for shear lag is more compli-
cated than for the ordinary %OX beam. In addition to hav-
ing smooth effectiveness curves in chord and span directions,
based on the idsal curves of figure’s 6 and 7, the location
of the shear center and the centroid of the effective mate-
rial must be made to follow a smooth curve.

A complete shear-lag analysis of this wing has been
made %y the Grumman Aircraft Engineering Corporation by the
use of the effectiveness-fact or method. In the present re-
port a detailed description of the reasoning behind .the ef-
fectiveness curves is given. Certain modifications of the
curves are suggested, and new calculation forms are pre-
sented to speed up future wing analyses.

In the analysis separate curves for beam and chord ef-
fectiveness EIB and Elc were drawn and used in the
unsymmetrical-bending formula. This method is not strictly
accurate mathematically and instead the method for a single
El is recommended. In the case of the wing for airplane B,
the error is insignificant because the product, of inertia
is very small at most sections, which would not necessarily ‘
be true of all wings.

Location of shear cent er.- The %est place to start
the shear-lag analysis is at the hinge fittings “oetween
the center s6ction and the outer panel of the wing where
the location of the shear center and loads are completely
determined. (See figs. 14, 15, and 16. ) For positive
lifts all the tension load is carried at C (fig. 17);
therefore, the shear center lies on a vertical line through
C and the compression load is divided between A and’ B
inversely as their distance from the shear center line.

Inboard of the hinge fittings, the material in the
bottom cover forward of the cap strip C will start to
take some of the compression load as the sheet transmits
shear around from A and forward from C. This action
moves the center of the compressfofi load forward and with
it the shear center. At the plane of symmetry of the air-
plane the shear center will be the farthest forward but”,
because the shear-center line must vary in a very easy,.... -e .-..
smoo”tili~U~~e”9 it “will’ not come as “far forward “as though
there were infinite length to the center section.
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Outboard of the hinge fittings the presence of the
wheel well in the bottom surface prevents the compressi-on
load from distributing forward. This result keeps the
shear center in line with the lower cap strip until out-
board of the wheel well. From there to the tip, the shear
center will move forward as the compression loads spread
forward, until at the tip the shear center will coincide
almost directly with the location according to the beam
theory. The motions of the shear center are shown In fig-
ure 14. A method of checking the location of the shear
center will later be describecl.

Effectiveness-factor determination for tom surface=-
If the assumption that the shear center ancl the centroid
of the effective areas coincide is used as a guide and the .
curves are faired to look like the” ideal as much as is
practicable, the effectiveness curves in beam %ending may
be drawn. (See fig. 15.)

!2he cap strip B will be considered to have unit ef-
fectiveness throughout.

10 In’board of hinge fittings -

The value of. El for stringer G will fall off rap-
idly as the leading edge H and stringer C build Up,
in order to keep the centroid of the effective material
‘back with the shear cenber. At the plane of symmetry
(station O) stringers C and H will have an effective-
ness of about 55 percent because it is impossible to load
them any more than by means of the shear in the sheet.
Stringer G will come up a little from a law -point at
station 44 as the shear center moves slowly forward.

The ideal curves of figures 6 an? 7 are used to fair
in the shape of the stringer curves. It is believed that
the curve Sor stringer E would be improved if it were
made to drop off .to zero between stations 29 and 44, since
it is impossible to s%ress the end at station 29 with more
than the sheet can transmit in compression.

9
,4 . Outboard of hinge Yittings -

The effectiveness of stringer G will have to fall
off very rapidly through the wheel well as stringers C,
D, E, F, and H build up from zero in order to keep the
shear center and the centroid of effective area loads over
the lower cap strip. “Stringers C, D, E, and F will take
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more or less ideal shapes, dying out to zero at each end.
The maximum height of these curves will ‘be governed by the
condition that the shear center cannot move forward too
fast outboard of the wheel well and by the rate at which
the top cover sheet can transu.t shear as ahown by. the
slope of the chordwise-effectiveness curves.

Stringer H is kept very low until outsicle the wheel
well because of the discontinuity of the torque box through
this region and the nature of the curves for the under sur-
face. Outboard of the wheel well H vill gradually rise
to unity near the tip as the shear forces in the sheet load
it. Stringer G will drop to zero at station 277.

3. Material back of cap strip -

To neglect completely material hack of the cap strip
as ineffective in beam bending would introduce appreciable
error, particularly for stringers near the cap strip, where
it is necessary to transmit considerable shear in the sheet
ancl riveted connections. In the analysis of effectiveness
factors for beam and chord bending, the curves were as
shown in figure 15- If a single factor E: is used, as is
recommence.cl for future curves, the E1 for member A would
follow the ~tB of figure 15. !l!he El for the trailing
edge material (element V) would be taken equal to ~lc of

figure 15, and the material would be assuned concentrated
at the beam-bending neutral axis (z = O) so that it would
enter the chord-bending but not the beam-bending calcula-
tions.

4. Fairing in curves -

The final curves are obtained hy workin”g between the
chordwise curves and the spanwise curves, with the ideal
shapes and the relative effects of beam and chord bending
in mind. They should show the general behavior of the top
sheet without consideration for the minor irregularities
that must be taken care of with more detailed investiga-
tions.

Effectiveness-factor determination for %ottom sur-
face.- The lower cap strip will be considered 100 percent
effective throughout in computing the effectiveness fac-

>-. .*--tor..,f.om.,..the b,ottom .surf:ac-e..<% -...._- ,.

1. Inboard of hinge fittings -
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Stringer J will be zero at the hinge station because
the fitting is only on the top chord. It will build up as
shown in order to keep shear center back where it should be.

Spanwise plots L and LI need no comment. In the
chordwise plots of figure 16, however, that for station 44
seems in error. The dotted line should be followed, not
the solid one, since the hole outboard of station 44 pre-
vents. stressing the sheet at this point, even in tension.

2. Outboard of hinge fittings -

In the wheel-well region, stringer J is subject to
local deformations caused by the discontinuity of the
torque box through the wheel well. The inclusion of these
effects in the general analysis would be very difficult;
the effectiveness for member J was therefore taken at
zero from the hinge to station 157 for the bending-section
properties and the local effects were later superimposed
thereon.

Springer L has very nearly the ideal effectiveness
shape, but the ideal curves would indicate that it should
not cone up from station 142 quite as steeply as is shown.

3. Material back of cap strip -

Effectiveness curves for the material lack of the cap
strip are drawn ina manner similar to that for the top
sv.rface.

COMPUTATION FQRMS FOR BENDING STRESSES

Tabular forms have been prepared to facilitate compu-
tation of axial stresses and loads in wing beams; eamples
of the forms are included as tables 1 and 2. Table 1
shows the calculation of section properties for the effec-
tive areas. Columns 1 to 17 and computation of Ixx, Izz,

and Ixz need no explanation. The sym%ols Cl, Ca, C3,

and C4 represent terms in the unsymmetrical bending fori’cu-
ula alterecl ta suit the effectiveness-factor method of
analysis .

MEK - %~xx
‘B = 1 ~ -Iz

xx Zz X!z
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The values of K1 and Ka Sn colunns 26 and 27 for
each flight condition are used in table 2 to compute the -
bending stresses and the axial loads in each member.
These load values are u“s”edin obtaining the shear stresses
in the section and need be calculated only for those condit-
ions in which the shear stresses nay be critical.

SHEAR Sl!ILESSAND SHEAR CENTER

As a rough check on the accuracy of the effectiveness
curves, it would be desirable to be able to find the loca-
ti”on of the shear center in a fairly rapid, straightfor-
ward fashion. This shear center should correspond to the
axial stresses. and loads that were obtained from the curves.

The shear center may be found by computing the shear
stresses in the sheet and the webs due ‘only to bending and
then by finding the point in the section around which the
moments of these shear stresses are zero. It is an estab-
lished principle that, when the axial bending stresses and
loads in the members have been selected (whether rightly or
wrongly makes no clifference), there is only one combination
of shear stresses that will naintain equilibrium. This
principle has been cliscussed fully in references 6 to 10
and will now be cliscussed in detail. The principle states
that, for any set of axial loads, it is possible to obtain
a corresponding shear center. The spanwise curve of these
shear centers will then serve as a check on the effective-
ness curves, and the shear stresses obtained can be used in
the destgn of the webs, sh.e.et,and riveted connections.

Fundamental Equation for Shear Due to 3ending

Consider the equilibrium of the elemeht shown in fig-
ure 18 representing a portion of a box beam. Assume that
the effectitie area of the sheet in bending is combined
with the stringer. If qn is the running shear in pounds
per inch at station n, then

A..,.-

QE+qlqn = dv
*.-$ . . . .-. ,.r .

,.,:.. .,--<...!... . .. . . .

where dP /dy is the average change in axial load per inch
in the stringer over the elemental distance ay, and ’41
is the average shear per inch over section 1.
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If t~ere are several other stringers between sections
1 and n (fig. 19), then the shear per inch at sectien n
will be

or, in terms of shear stress where q = fet.

n
ftn=z ~+f
‘n 1 dy %t~

(

(7)

The term ~ ~ is easily obtained from the computed ax-

ial loads. If a load curve is drawn for each stringer and
cap strip, the slope of this curve at any station will le
dP/ay. A less accurate method that can be used if desired
is descrf%ed in reference 7: it gives the average shear
over a finite length of wing. Tabl”e 3 is applicable to ei-
ther method.

Derivation of Equation .for Shear at Cut Section, ql

The final value o’T shear flow or running shear qn

at any point due to bending alone must he such that the
total shear deformation around the section from section
n back to section n will be zero. Only one value of

ql will make qn fulfill this requirement. From the
method given in references 6, 8, and 9, ql may be ol1-

tained by the method of least work.

Reference 10 presents a method of finding the total
shear in a section, both bending and torsional, by a stat-
ically determinate method without the least-work solution.
Referetice ‘7has amplified the method for general applica-
tion in a simple straightforward fashion that completely
eliminates computation of the shear center. If the shear
stresses were the only consideration, t“his method would be
the most practical. As a check on the shear-lag effective-
ness curves, however, it is here desirable to be able also
to find the shear center in a rapid fashion, which can he
done only by making use of the least-work solution and ob-
taining the shear stresses, Just due to bending, without
the superimposed torsion. The computation is not much
longer than that shown in reference 7 and the additional
information obtained is worth ‘the difference.

The least-work solution requires that
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o

where W is the total work due to shear deformation in the
secti”o’ti,

,..,.-

f

L

W=* f
‘n

tn ds

o
integrated around the complete section wheti f’st * qss and

(8)

But , from equation (’7a)

so that equation (8) becomes

J
L

1
-E

f tl ds = O
‘n

o
For any secti,on, G can be considered a constant and

will le assumed to include the effect of diagonal tension.
Therefore

L

J f tl ds=O
‘n

o

If equation (7a) is substituted in equation (9),

(9)

or
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If equation (10) ~s aubstltuted ~n equation (7)s

(10)

(11)

Equation (11) is perfectly general and is applicable to ,
any single cell beam. ‘ote ‘hat qn ieJjuet the ehear

due to bending antiassumes the shear loads to be acting
through the shear oenter. Shear qn 16 alao the average
shear flow p’er inoh over the spanuime distanoe dy.

Double Oells and Other Shapes of Beams

If the box girder has more than one cell or has mate-
rial extending out beyond the single cells the shears may
be found by extending the same principle. A detailed der-
ivation for finding the redundant ehears in a double tor-
sion box Is presented in appendix O.

In the t~e of. seotion shown in figure 20 the shear
in the extended flanges is sGatioally determined be~ause
at the free edge the shear 1s known to be zero and the
shear at any section of the extension may be obtained by m
the relation

q= ;E
~ d~”

(12)

The shear from equation (12) can then be directly added
to the shears in-the box. and
that of “a single torque box.

the problem is reduoed to “

.. —- . ... ..
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Lecation of Shear Center

Once the shear stresses due to axial loads have been
determined the shear center may be located. If the ex-
ternal shear loads are considered to act through the shear
center, the moment of the shear stresses about any point
such as the center of gravity must be equal to the moment
of the shear loads about that point, for static equilib-
rium.

The moment of the shear flow q about the center
of gravity is equal to ,q times twice the cross-hatched
area in figure 21.

2dA = ‘nzn+z - ‘n+lzn

For a section of large curvature, such as in the nose
D, the area between chord and curve may be estimated, dou-
bled, and ad?l.edto formula (13), if increased accuracy is
desired.

Now resolve V= and Vz into a single shear V and
take moments

(Vxa + VZ2) d . Vd =~q 2U

whar e d is the distance from the shear center to the
center of gravity. Therefore,

+%.
vzZq 2dA Vzzq 2U

Xs,c. v“ = Vx”+vz

Vx = Vxa 2U Vxxq 2dA
zS.c. =d—

v v= ‘Vx +Vz
; ~1

(14)

(15)

The location of the shear center for each st”ation should
plot in a smooth spanwise curve if the original effective-
ness curves are fairly accurate-
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Shear Due to Torsion

Since V= ana V= are not located at shear center,

there will. be a net torque on the section about the sheaz
center.

T S.c. = q) + Vz (xc-g: f- x~.c,) - Vx (Zc.g.+ ZS.J

The shear flow qt on any section due to this torque will
be

T
qt = z

This shear flow ‘can then be added to that due “to the beam
and the chord bending to give the total shear flow and
hence the shear stress at any point.

Effect of Taper

Taper in both depth and width will affect the shear-
stress aistri%ution. Taper in width can usually he safe-
ly neglected. Taper in depth, however, is important in
,the design of the vertical webs, since the cap strips will
carry a fair share of the applied shear load and relieve
the vertical webs.

Consider the tapered panel in figure 22. Take moments’
about A and assume dy so small that V may be consid-
ered constant over its length.

Vdy+ph-dPh-ph- Pdh=O

vay- dPh P pdh = O

‘ph+p~v=—
dy

(16)

or, as expected, the applied shear is the sum of the web

shear dp— h and the shear carried by the cap strips
ay

pii$e The slope between the cap strips is dh/&y. The

web shear dP/dy has already been obtainea entirely inde-



~ pendently of V by the methods outlined and equation (11)
so that no taper correction will be necessary.

,. ., Equation (16) c,~n be used, however, as a rough check
on the shears obtained fibn’equation’ (11) by conputing the

tern p ~ fron the axial loads and slope, adding it to

the vertical web shears, and checking the sun with V, the
applied beam shear on the section.

Tabular Forms, for Shear Computation

Table 3 has been developed for quick computation of
shear stresses and shear center. A brief ex~lanation is
given here.

For ease in integration, elements should renumbered
starting from the upper cap strip in a clockwise direction.
Shear panels should be numbered In a clockwise direction
corresponding to the adjacent counterclockwise element.
Material in flanges extending beyond the torsion box should
be numbered separately starting from the free edge. (See
fig. 23.)

The cut will he taken in the vertical web, web A,
with thickness ta. Column 2 contains the width ds of
each shear panel measured between elements. Columns 6 and
7 are the coordinates x and z of the various elements
measured to the center of gravity of the section. The se
coordinates differ Slj.ghtly fr~~ those of columns 12 and 13
of ta’ble 1 because in table 1 the coordinates are to the
center of gravity of each element, while in,table 3, the
coordinates are measured to the point at which the element
is attached to the skin. This method is necessary in order
that the summation of moments will be accurate. These coor-
dinates may be scaled off the rib drawings.

Columns 8 and 9 should he watched for signs and the
absolute value of their algebraic difference should be
entered in column 11. Column 10 need be used only where
there is sharp curvature in the skin between elements, such
as in the nose D. Columns 6 to 11 may be omitted if the
shear-center calculation is neglected.

*= ,--,...,..

ial load for each element at-the station in question. A
tangent to the load curve is drawn at the station (see fig.



28

24) and the slope is “computed. Column 15 is the progres-
sive summation of the values in column 14 starting on the
clockwise side of the cut vertical web. In column 17, qb
is the shear stress in any member due to bending only. (See
equation (11).) From the shear-center I.ocation (calculated
or estimated) and the computations in lines 3 to 9, the tor-
sional shear ~t is obtained, which is added to qb giv-
ing column 18. The right-hand term of equation (15) is ob-
tained from the summation of column 19 and is used in the
shear-center calculation in lines 12 and 13.

If it is desired to omit the shear-center calculation
and solve for the shear stresses by the statically determi-
nate method of references 7 and 10, the tabular form may
still be used with slight modification. Oolunns 2 to 5 may
~ &itted. Columns 16, 24, and 30 should be changed to

z— x 2AA, ~eolumn (15) x column (9)], Columns 17 andB ~~
19 may he left out and a separate computation may be made
for the correction shear at.the cut section

‘Bxc.g. - Vczc.g. - column (16)

2 X area of torque tube
= q~+t

which is then added to column (15) to get q in column
(18).

Table 3 is worked out for station. 232 of the wing for
airplane B as an example. This section has projections be-
yond the torque box, which are handled as previously noted.
Care must be taken that the proper sign is used for these
projection shears. Note that the top-cover projection
changes sign when added to the torque box in column (15).

For simplicity, the shear from element V is assumed
to be divided evenly between top and bottom cover rather
than computed as though it were a double torque box.
Shears in the projections are unaffected by the torque
shears on the box.

The load curve of figure 24 is a good check on the
general trend of the stresses and the loads. Each
stringer or cap strip should show a smooth curve. The slope
of each curve at any point represents the load per inch that
the rivets must transfer from skin to stringer. This fact
can be used in designing the rivet sTacing. The spacing
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will be most critical where the curves are steepest, that
is, at each end of the stringer.

*The curves for J and G are caused by the.reverse
bending in the front beam, and the irregularities through
the wheel-well region (station 142) are apparent in the
cap strips B and N.

The values of AP/ily of colunn 1“4.were obtained by
drawing tangents to the load curves at station 232,1 reading
values of P at station 222 and station 242, and dividing
by ~y = 20. As a check on the accuracy of the calcula-
tions, the summation of column 14 should be approximately
zero.

ANALYTICATI CHECK FOR EFI?ECTIVENXSS” CURVES

Yinal proof of the accuracy of the effectiveness curves
and the axial and shear stresses obt’ained from them can be
made by using the principle of consiste~t deformations.

In figure 25 assume that the applied’ loads cause the -
structure to deform as shown. If the effectiveness curves
and the computed stresses are accurate, then the deforma-
tion of point H to HI should be the same, whether fig-
ured by the path AEI F! GI HI or by the path ABI Cl j)l
~lc The first path will include axial cleformation in AE
plus shear deformations in panels EF, FG, and G~O l!he
second path is made up of shear deformations in AB, BC,
and CD, and axial deformation in DH.

Axial deformations will be computed by the formula

where fb is the average axial st”ress in a length Ay of
a member. Shear deformation iS computed from the relation

qds’
as.n

e

The effective shear modulus Ge should be so selected that

diagonal tension is considered.

In the following section a check is made for the wing
of airplane B between stations 232’ and 277. (See fig. 26. )

,

I -----



Calculations for shear stresses at station 277 are not in-
cluded but are similar to thosa for station 232. For new
work, approximate checks~ which will serve as a very good
control~ can be made when the effectiveness curves are
first drawn.

qOP COVER

In order to take diagonal tension into account from
reference 29 Ge will be-selected at 0.2G = 0.2 x

4$000,000 = 800,000 po”unds per square inch.

SHEAR DEFORMATIONS

Panel I Station 232 I Station 277
I

t as

(lb/qh.) (in.) (in.)

qas ds

w (lb~in.) (i:.) (in.)
‘*
tGe

c -4.9 0.040 7.40 -0.00113
,.

E g.g ● 040 11.20 .00343 -6.5 0. o&o15.00 -O:::s):;
G 19.2 ● 040 12.00 .00720 2.0 .040 9.00
H 22.1 .040 7.00 .004!3319.5 .(3407.00 .00427

Total .01433 in. .001gs In.

AXIJIL DEFORMATION

B

II

-1430 0.404 45 -0.01592
E -510 -.210 45 -.01092
G -340 .204 45 -.00750
H I -65 I .083 I 45 I -.00352

Then from figure 26,

Path B3 - BEGH 0.01592 + 0.00183 = 0.01775 in.
Path BCEGH - HH 0.01433 + 0.00352 = 0.01785 in.

This result checks very well, supporting the validity of
the effectiveness curves. Such checks can be made wher-
ever considered necessary.

Grumman Aircraft Engineering Corporation,
Bethpage, N. Y.

\
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APPENDIX A

SIGN COIWEIITIONS AND SYMBOLS

,.,
Signs- .- .

Applied loads:

Shear loads - positive up, rearward and outboard

Bending moments - positive if causing compression in
upper rear corner of section

Pitching moments - positive if a stalling moment

Stresses:

Axial stresses - positive if tensile
,

Shear stresaea - positive if in same direction as stall-
ing moment (olockwise if section is viewed toward
plane of symmetry of airplane)

Coordinates:

x, Ys z - positive if rearward, outboard, and up from
origin

Elemental skin widths, da:

Integrations in clockwise direction (same direction as
positive shear)

Symbols

The symbols used in this paper correspond to similar
ones in references 1 and 11.

A cross-sectional area

Ar is flange, or cap-strip, ‘area and includes any
adjacent material considered to act with it. AL iS

area of stringers from flange to center of panel and
includes the effective adjacent’ sheet. If there is

--.-=.–.4
“-..-o+n”one-ones-tri-nger, AL is one-half the area of the

stringer, AT =AF+AL
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aXl al 1oa.d

shear modultae~tncluding effect of tension fields

th~okness of cover sheet
b

Young~fl modulus

half-width of beam for single.stringer beama:distance
from flange to oenter of gravity between flange and
center line for a multistringer beam

shear-lag parameter ]$~+$)

shear force

depth of beam

stress

effeatlveness fact or (f~/fy)

Es and EIO effectiveness factor for beam and ohord bending

Ii bending m6ment . (Ph)

I Izz, 1=%XxS geometric moments of tnert~a

v rehear strain

Q runnS,ng shear. pounds per inch of skin

II total change in length of flange

L length of panel from free end to plane of symetry.
Also total ohange in length of stringer

.x distance along x axis measured from orl In halfway
Tbetween flanges of panel (equation (4- )9 or from

reference point
.-

% distance along a axis measured from reference point

=S.cso Ys.c.v 8s.=, ~t8tance from oenter of gravity of “

material to shear center

=C.g.s yo.g.~~~agm d~stance from load axla to e.g. of
section
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Y auxiliary parameter

a angle of attaclc

v total work

T! torque

v applied shear on the section

Vx,vz applied beau chord shear
on section

ds width of shear panel

ap axial deformation

as shear deformation

Subscripts

t due to torque

b due to bending

a at section a

e effective

a beam

c chord

3? flange

L’” stringer

a shear

T! total

w we%

c cover sheet

c.g* center of gravitY

>,. . ..... ..... ......% ,,. . ... .. .
S.c. shear “C@nter .-,

n at section n

o origin
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The fundamental equations are:

aPL = d%

SW aydpr=r. dsQ

.

(la) “

(k

(xc)

In equation (la)

., dPL = dfLAL dsc = fatdy (a)
.

so that if equation (la) is differentiated and equation
(10) Is substituted,

horn equations (la) and (a)

From equations (lb) and-(a)

and from equations (c) and (a)

(b)

(c)

.

(d)

.

(e)
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Substitute equation” (e) in equation (b) and simplify

Since

~L+AF=~+l
ALAF AL ~

and

Let

( )Ka=Q~+~
Eb AL AF

Also SWdy = dM, so that equation (f) becomes

dzf L M
K2fL + K2 — = o

T- ATh

and by analogous derivations,

dzf~—. KzfF+K2 &=0
dyz

d2f~ s#L
-K2fs+K2—= o

dy2 htAT

(f)

(g)

(h)

(i)

In the NACA methods of analysis~ equations (g), (h).
and (i) are solved by means of arithmetic integration so
that if K, M, Sw, h, t, AL, AF, and b
the span,

are variable along
they may be taken into consideration. (See ref -

e-r.en-c~-s--k.t.0 6..)“-

T!he solution of equations (g), (h), and (i) will be
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obtained four the following conditions:

Ica = a constant

J_
hAT

= a constant D

SWAL
htAT

= a constant R

Let p denote the operation d/dy; then equation (g) be-
comes

(p’ - K2)fL=.Ka&

Take the first derivative to eliminate the constant

p(p%K2)fL=o (j)

This is a linear differential equation that has a so-
lution in the form

mly ‘,2Y m3r

f~ =Ae .+Be “+ Ce (k)

where ml, ma~ and m3 are the roots of equation (j) for m

substituted for p and f~ = unity.

m(mz - K2) = O

or

ml = -K m2 =K m3 = O

or equation (k) becomes

‘L = Ae-Ky + BeKy + C (1)

If equation (1) is substituted in equation (g) and is then
solved for Cs it will he seen that

Thus the solution of equation (g) for the condition stated
is

- Icy
fL = Ae + BeKy + D (ml)
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Similarly

f~ . Ee-Ky + FeKy -+D (ma)

.,
‘Ky+Qelcy+R”f~ = Ne (m3)

Coefficients A, B, Z, F, N, and Q are determined by
the boundary conditions for the particular problem con-
sidered. -/

$trin~er stress.- I?or the beam of figure 3 the fol-
lowing boundary conditions hold when

Y=Q fL = ()’

and when ‘fL . ()Y=L ~

$ubstitutc in equation (ml)

A +B +D = O

-KAe-KL + KBeKL

Solve simultaneously for A and B

KL
A=

-I)e
2 cosh XL

B=
-De-KL

2 cosh KL

Substitute in (ml) and simplify

[

K(L-y) 1-K(L-y)-
D

‘L =
+D

2 cosh XL ‘e
-e

[
fL =D 1 - cosh K(L-y)

,1cosh KL
(2b)

Caa. ,. e.:> —---- -. D-strim stress.- The boundary conditions for the. . .
cap strip are:
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I

When

Y=Q

fF=A
Arh

and when

In a maniler similar to the stringers,

fy=
[

AL cosh X(L-y)
DI+H

& cosh
‘L 1 (2a)

APPENDIX C

Dl?RIVATIONOF EQUATIONS FOR BEAM SHEAR

II?DOUBLE-CELL TORQUE BOXES

In t,~rmsof the shears (see fig- 27) at the cut secti
tions ql and ~z t the variable shears in the three

parts of the loop !139 q~$ and qd are

In order to find the values of ql and qg 9 the

least-work solution is applied (see reference 12) to the
two loops (1) and (2):

J
a

f

c

W1 =* b f~b2tds i-~ f 2 tds
‘c

c a

(bl)

.,..,
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f

c

lfa=$dfatds+~ ed
f

f 2 tas
‘c

a a
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Perform the operations

a WI a W2

af~z =
o—

afs2 =
o

and equations (bz) and (lIa) become

f

a
af~b

f

c
afs

1) t— ~ds=o‘Sb af ds + f
t afsl (cl)

S1 ‘c
c a

J
c afs

f

c afs
ads+t— ~ds=Oa ‘Sd af ft (c~)

‘c dfs2
a Sz a

But

afs afs
_~ : ‘1

tz afsc -t2 afs tz
c

df~l ~,af=~$~=—~ t <=-i-
‘1 ‘2

Substitute these expressions in equations (cl) and (c2) and
simplify

f

a

f

c

bf tlds + fs tlds = o (dl)
c ‘b c

a

f

c

I
c

df t2ds - fs t2as = o (da)
‘d c

a a

Substitute equations (a) in equations (dz) and (d2)

J

a a b
c c

tl

f

tl dp

f

t
b -Z-

qlds - b ds~—+
7 dy

i

~ q=ds - : q2d6
1 t

c c e
..-... .- ..-, .,

““r

c
tl”” c’ d~

+ ~ds E,—=O
1,2 Ciy

a

—
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Simplify

~ a c

1
>ds-ql

J

t

f

t
q2 c -#ds= @ ds

a a a

(e2)

a

Equations (el) and (eZ), although apparently compli-
cated, are easily obtainable in a tabular computation by
progressive summation. Values of ql and qz can he

solved for simultaneously and substituted in equations
(a) for the shears at any section.

c
In the integration

dP
1:2 ~

for ‘the common web, both

upper and lower cap strips should be involved, while in
the other integration they should be omitted. Skin effec-
tive in %ending may be included in an approximate manner
by considering the area concentrated at the center of the
panel and then treating it as an extra stringer.

Triple torque boxes may also be handled by a similar
derivation, there being three equations such as equations
(e,) and (ez) to solve simultaneously.

The shear center may be found in the same manner as



for a single torque box as soon as the bending shears are
determined, by taking a moment of these shears about the
center of gravity and equating it to the moment of the ex-
ternal shears about the center of gravity.
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